2n+ 18 \(⋮\) 2n+5
=> \(\left(2n+18\right)-\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(2n+18-2n-5\right)⋮\left(2n+5\right)\)
=> \(13⋮\left(2n+5\right)\)
=> \(\left(2n+5\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
ta có bảng sau
2n+5 | -13 | -1 | 1 | 13 |
2n
|
-18 | -6 | -4 | 8 |
n | -9 | -3 | -2 | 4 |
vây n \(\in\left\{-9;-3;-2;4\right\}\)