\(\frac{4n+3}{2n+1}=\frac{2n+1+2n+2}{2n+1}=\frac{2n+1}{2n+1}+\frac{2n+2}{2n+1}=1+\frac{2n+1+1}{2n+1}=1+\frac{2n+1}{2n+1}+\frac{1}{2n+1}=1+1+\frac{1}{2n+1}\)
Để (4n + 3) chia hết cho (2n+1) thì \(\frac{1}{2n+1}\) phải là số nguyên
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(2n+1=1\Rightarrow n=0\)
\(2n+1=-1\Rightarrow n=-1\) (loại)
Vậy n = 0
4n+3 ⋮ 2n+1
=> [4n+3 - 2(2n+1)] ⋮ 2n+1
=> [(4n+3) - (4n+2)] ⋮ 2n+1
=> 1 ⋮ 2n+1
=> 2n+1 \(\in\) Ư(1) = {1}
=> n = {0}