Đặt \(A=1+3+...+2n-1\)
Tổng A có số số hạng là:
\(\frac{\left[\left(2n-1\right)-1\right]}{2}+1=\frac{2n-1-1}{2}+\frac{2}{2}=\frac{2n-2+2}{2}=\frac{2n}{n}=n\)(số)
Tổng A theo n là:
\(\frac{\left(2n+1+1\right)\cdot n}{2}=\frac{\left(2n+2\right)\cdot n}{2}=\frac{2n\left(n+1\right)}{2}=n\left(n+1\right)\)
Thay A vào ta có:
\(n\left(n+1\right)=1225\)
.... ?Đề sai?.....
Có số số hạng là :
( 2n -1 - 1): 2 + 1 = ( 2n- n ) : 2 + 1 = 2.( n-1 ) :2 + 1 = n-1+1= n ( số hạng )
Tổng trên là :
( 2n -1 + 1 ) .n : 2 = ( 2n . n ) : 2 = n2
\(\Rightarrow\) n2 = 1225
n2 = 352
\(\Rightarrow\) n = 35