Bài 5: Giải bài toán bằng cách lập hệ phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương

Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị và nếu đổi hai chữ số cho nhau thì được số mới bằng 17/5 số ban đầu

Nguyen
27 tháng 1 2019 lúc 19:15

Gọi 2 chữ số của số cần tìm là a và b. ĐK: \(a,b\in N,a>0,a,b< 10\)

Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có pt: a+4=b(1)

Nếu đổi hai chữ số cho nhau thì được số mới bằng 17/5 số ban đầu nên ta có pt: \(10b+a=\dfrac{17}{5}\left(10a+b\right)\)\(\Leftrightarrow-\dfrac{33}{5}b+33a=0\left(2\right)\)

Từ (1) và (2), ta có hpt: \(\left\{{}\begin{matrix}a+4=b\\-\dfrac{33}{5}b+33a=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=5\end{matrix}\right.\)(TM)

Vậy số đó là số 15.


Các câu hỏi tương tự
Nguyễn Huy
Xem chi tiết
WonJeong. jk
Xem chi tiết
hoàng thùy linh
Xem chi tiết
Thyk7
Xem chi tiết
mika chan thèm trà sữa
Xem chi tiết
minh nguyễn
Xem chi tiết
Linh Chi
Xem chi tiết
trần ngọc vy
Xem chi tiết
Phạm Băng Băng
Xem chi tiết