theo bài ra ta có:
\(\dfrac{6}{x+1}.\dfrac{x-1}{3}=\dfrac{6x-6}{3x+1}\\ =\dfrac{6x+2-8}{3x+1}\\ =\dfrac{2\left(3x+1\right)-8}{3x+1}\\ =2-\dfrac{8}{3x+1}\)
để \(\dfrac{6}{x+1}.\dfrac{x-1}{3}\) là số nguyên
=> \(\dfrac{8}{3x+1}\) nguyên
\(8⋮3x+1\\ \Rightarrow3x+1\inƯ_{\left(8\right)}=\left\{-1;1;2;-2;4;-4;8;-8\right\}\)
ta có bảng sau:
3x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
3x | 0 | -2 | 1 | -3 | 3 | -5 | 7 | -9 |
x | 0 | \(\dfrac{-2}{3}\) | \(\dfrac{1}{3}\) | -1 | 1 | \(\dfrac{-5}{3}\) | \(\dfrac{7}{3}\) | -3 |
mà x là số nguyên
=> x ={0;-1;1;-3}
vậy x ={0;1;-1;-3}