Gọi phân số tối giản cần tìm là \(\dfrac{a}{b}\)
Ta có:\(\dfrac{a}{b}\):\(\dfrac{5}{11}\)=\(\dfrac{11a}{5b}\)
\(\dfrac{a}{b}\):\(\dfrac{11}{21}\)\(\dfrac{21a}{11b}\)
\(\dfrac{a}{b}\):\(\dfrac{25}{28}\)=\(\dfrac{28a}{25b}\)
Vì cả 3 thương trên là số tự nhiên nên a chia hết cho 5,11,25\(\)\(\Rightarrow\)a\(\in\)BCNN(5;11;25)\(\Rightarrow\)a=275
Do đó b\(\in\)ƯCLN(11,21,28)=1
Vậy phân số tối giản cần tìm là \(\dfrac{275}{1}\)