x2 + 2y2 - 3xy + 2x - 4y + 3 = 0
<=> (x+y)2 + y(x+y) -2(x+2y) = -3
<=> (x+2y)(x+y-2) =-3
Do x, y dương nên x+2y>x+y-2
Ta xét TH:(x+2y)(x+y-2)= 1.(-3)
<=> x=0, y=1
Vậy (x;y)=(0;1)
x2 + 2y2 - 3xy + 2x - 4y + 3 = 0
<=> (x+y)2 + y(x+y) -2(x+2y) = -3
<=> (x+2y)(x+y-2) =-3
Do x, y dương nên x+2y>x+y-2
Ta xét TH:(x+2y)(x+y-2)= 1.(-3)
<=> x=0, y=1
Vậy (x;y)=(0;1)
tìm nghiệm nguyên dương của phương trình
x2 -y2 +2x- 4y -10 =0
Giải phương trình nghiệm nguyên \(x^2+2y^2+3xy-x-y+3=0\)
10 Phân tích các đa thức sau thành nhân tử:
a) 5xy(x-y)-2x+2y ; b) 6x-2y-x(y-3x)
c) x^2+4x-xy-4y ; d) 3xy+2z-6y-xz
11 Tìm x, biết: a) 4-9x^2=0 ; b) x^2+x+1/4=0 ; c) 2x(x-3)+(x-3)=0
d) 3x(x-4)-x+4=0 ; e) x^3-1/9x=0 ; f) (3x-y)^2-(x-y)^2=0
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
Bài 1: Biết x ; y ; z là nghiệm nguyên của phương trình x2 + y2 + z2 = xy + 3y + 2x - 4
Khi đó x + y + z = ?
Bài 2 : Số nghiệm nguyên dương của phương trình x2 - 2y2 = 5
Bài 3 : Phương trình x2 + y2 + 2x + 1 = 0 có nghiệm ( x;y) = (.......) ?
Giúp mk vs !!!
Tìm nghiệm nguyên dương của x và y của phương trình :
\(x^4+2x^3+2x^2-y^2+x+3=0\)
thực hiện phép tính;
a,\(\dfrac{\left(3a^2b\right)^3\left(ab^3\right)^2}{\left(a^2b^2\right)^4}\)
b,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
c,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
d,\(\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
Tìm \(x;y\in Z^+\) biết :
\(a,2x^2-xy+7x+2y-y^2-7=0\)
\(b,x^2+2y^2+3xy+3x+5y-14=0\)
P/s: Hướng dẫn em làm chi tiết dạng này nữa với ạ