Lời giải:
Vì \(x^2\geq 0, \forall x\in\mathbb{Z}\) nên:
\(y^2=x^4+x^2+1\geq x^4+0+1>x^4\)
\(y^2=x^4+x^2+1=x^4+2x^2+1-x^2=(x^2+1)^2-x^2\leq (x^2+1)^2\)
Vậy \(x^4< y^2\leq (x^2+1)^2\Leftrightarrow (x^2)^2< y^2\leq (x^2+1)^2\)
Theo định lý kẹp suy ra \(y^2=(x^2+1)^2\)
\(\Leftrightarrow x^4+x^2+1=(x^2+1)^2=x^4+2x^2+1\)
\(\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y^2=0+0+1=1\)
\(\Rightarrow y=\pm 1\)
Vậy \((x;y)=(0; \pm 1)\)