Tìm nghiệm nguyên của phương trình
\(2x^2+2y^2-2xy+x+y-10=0\)
tìm nghiệm nguyên của phương trình
xy2 + 2xy - 243y + x = 0
Hướng dẫn: Ta có: xy2 + 2xy - 243y + x = 0
<=> x( y +1)2 = 243y
Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số).
a) Giải phương trình khi m = - 4.
b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn: \(x_1^2+x_2^2-2x_1=25+2x_2\)
1.tìm cặp số (x;y) sao cho y nhỏ nhất và thỏa mãn:x\(^2\)+5y\(^2\)+2y-4xy-3=0
2.tìm nghiệm nguyên dương của phương trình: x\(^2\)+y\(^2\)=13(x-y)
3.Tìm nghiệm nguyên dương của phương trình:x\(^6\)+2x\(^3\)+2y-5=0
4.tìm nghiệm nguyên của phương trình:xy+x-2y=3
5.tìm nghiệm nguyên của pt:x\(^2\)-4xy+5y\(^2\)-169=0
6.tìm x,y nguyên thỏa mãn:y\(^2\)+2xy-7x-12=0
1) Tìm nghiệm nguyên của phương trình \(x^3-y^3-2y^2-3y-1=0\)
2) Tìm bộ nguyên dương (x,y,z) thỏa mãn phương trình
\(\left(x+y\right)^2+3x+y+1=z^2\)
Cho phương trình
x2-(m +3)x +2(m +2)=0
Tìm giá trị của tham số m để phương trình có nghiệm x1=2x2
b
Hãy lập phương trình bậc 2 có 2 nghiệm x1=2x2
Gọi x1, x2 là nghiệm của phương trình ( k - 1) x2 - 2kx +k -4=0
Không giải phương trình tìm mối liên hệ x1 và x2 không phụ thuộc vào k
Cho phương trình : x2+2(m-1)x-2m-3=0 ( m là tham số )
a. Chứng minh phương trình luôn có 2 nghiệm x1;x2 với mọi m thuộc R
b. Tìm giá trị của m sao cho (4x1+5)(4x2+5)+19=0
Câu 1: Xét phương trình x2-m2x+2m+2=0 ( ẩn số x). Tìm giá trị nguyên dương của m để phương trình có nghiệm nguyên dương.
Câu 2: Cho 3 số nguyên dương a, b, c thỏa mãn 0≤a≤b≤c≤1. Tìm giá trị lớn nhất của biểu thức:\(\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)