g(x)=0<=>\(\left(\dfrac{2}{3}x+3\right)\left(\dfrac{3}{5}-1\right)=0\)<=>\(\left\{{}\begin{matrix}\dfrac{2}{3}x+3=0\\\dfrac{3}{5}x-1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy .....
g(x)=0<=>\(\left(\dfrac{2}{3}x+3\right)\left(\dfrac{3}{5}-1\right)=0\)<=>\(\left\{{}\begin{matrix}\dfrac{2}{3}x+3=0\\\dfrac{3}{5}x-1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy .....
Bài 1: Cho hai đa thức \(f\left(x\right)=5x-7;g\left(x\right)=3x+1\)
1. Tìm nghiệm của \(f\left(x\right);g\left(x\right)\)
2. Tìm nghiệm của đa thức \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
3. Từ kết quả câu 2 suy ra với giá trị nào của \(x\) thì \(f\left(x\right)=g\left(x\right)\)?
Bài 2: Thu gọn rồi tìm nghiệm của các đa thức sau:
1. \(f\left(x\right)=x\left(1-x\right)+\left(2x^2-x+4\right).\)
2. \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x.\)
3. \(h\left(x\right)=x\left(x-1\right)+1.\)
Bài 3: Cho đa thức \(f\left(x\right)=x^2+4x-5\)
1. Số -5 có phải nghiệm của \(f\left(x\right)\)không?
Tìm x: \(\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{2}{3}\right|+\left|x+\dfrac{2}{5}\right|+\left|x+\dfrac{3}{2}\right|=33x\)
Cho đa thức
B(\(x\))=\(x.\left(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\right)-\left(\dfrac{x}{3}-\dfrac{1}{2}x^4+x^2-\dfrac{x}{3}\right)\)
a) Tìm bậc của đa thức B(\(x\))
b) Tính B\(\left(\dfrac{1}{2}\right)\)
c) CMR: Đa thức B(\(x\)) nhận giá trị nguyên với mọi \(x\in Z\)
Tính giá trị biểu thức:
A= \(\dfrac{\text{(a+1)(a+2)(a+3)....(a+2003)(a+2004)}}{\left(b+5\right)\left(b+6\right)\left(b+7\right)....\left(b+2006\right)\left(b+2007\right)}\) tại a= 0, b= -4
B= \(\dfrac{1}{\left(x-5\right)\left(y+7\right)}+\dfrac{1}{\left(x-4\right)\left(y+8\right)}+....+\dfrac{1}{\left(x-1\right)\left(y+11\right)}\)tại x= 6, y= -5
Cho 2 đa thức :
f(x) = \(2x^2.\left(x-1\right)-5.\left(x+2\right)-2x.\left(x-2\right)\)
g(x) = \(x^2.\left(2x-3\right)-x.\left(x+1\right)-\left(3x-2\right)\)
a, thu gọn và sắp xếp f(x) và g(x) theo lũy thừa giảm dần
b, Tính h(x) = f(x) - g(x) và tìm nghiệm của h(x)
Cho \(f\left(x\right)=x^2+x\)
Tính \(\dfrac{1}{f\left(1\right)}+\dfrac{1}{f\left(2\right)}+\dfrac{1}{f\left(3\right)}+...+\dfrac{1}{f\left(2014\right)}+\dfrac{1}{f\left(2015\right)}\)
Tìm giá trị nhỏ nhất của biểu thức sau: M = \(\dfrac{-1}{2\left(x+3\right)^2+1}\)
Bài 1: Cho đa thức \(P=2x\left(x+y-1\right)+y^2+1.\)
1. Tính giá trị của P với \(x=-5;y=3.\)
2. Chứng minh rằng P luôn nhận giá trị không âm với mọi \(x,y.\)
Bài 2: Cho \(g\left(x\right)=4x^2+3x+1;h\left(x\right)=3x^2-2x-3.\)
1. Tính \(f\left(x\right)=g\left(x\right)-h\left(x\right)\)
2. Chứng tỏ rằng -4 là nghiệm của \(f\left(x\right)\)
3. Tìm tập hợp nghiệm của \(f\left(x\right)\)
Cho đa thức \(M\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
1. Tính \(M\left(1\right)\)và \(M\left(-1\right)\)
2. Chứng tỏ đa thức \(M\left(x\right)\) không có nghiệm