4x2+x-3
<=> 3x2+x2+x-3
<=> x(x+1)+3(x2-1)
<=> x(x+1)+3(x-1)(x+1)
<=> x(x+1)+(3x-3)(x+1)
<=> (x+3x-3)(x+1)
<=> (4x-3)(x+1)=0
<=> 4x-3=0 <=> x=3/4
<=> x+1=0 <=> x=-1
Vậy....
\(4x^2+x-3\)
Cho \(4x^2+x-3=0\)
⇔ \(3x^2+x^2+x-3=0\)
⇔ \(x\left(x+1\right)+3\left(x^2-1\right)=0\)
⇔ \(x\left(x+1\right)+3\left(x-1\right)\left(x+1\right)=0\)
⇔ \(x\left(x+1\right)+\left(3x-3\right)\left(x+1\right)=0\)
⇔ \(\left(x+3x-3\right)\left(x+1\right)=0\)
⇔ \(\left(4x-3\right)\left(x+1\right)=0\)
⇔ \(\left\{{}\begin{matrix}4x-3=0\\x+1=0\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}4x=0+3=3\\x=0-1\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=3:4\\x=-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{3}{4}\\x=-1\end{matrix}\right.\)
Vậy \(x=\frac{3}{4}\) và \(x=-1\) đều là nghiệm của đa thức \(4x^2+x-3.\)
Chúc bạn học tốt!