Ta có: 2n-3 = (2n+2)-2-3 = 2(n+1)-5
Để 2n-3 \(⋮\) n+1 thì -5 \(⋮\) n+1
\(\Rightarrow n+1\inƯ\left(-5\right)\) \(\Rightarrow n+1\in\left\{-5;-1;1;5\right\}\)
Ta có bảng sau:
n+1 | -5 |
-1 |
1 | 5 |
n | -6 | -2 | 0 | 4 |
Vậy n \(\in\left\{-6;-2;0;4\right\}\)
Ta có:
\(2n-3⋮n+1\)
=>\(\text{2.(n+1)-5}⋮n+1\)
=>\(5⋮n+1\) ( \(2.\left(n+1\right)⋮n+1\) )
=>\(n+1\inƯ\left(5\right)\) \(\left(n\in Z\right)\)
Ta có bảng sau:
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vậy \(n\in\left\{0;-2;4;-6\right\}\)