\(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=\frac{2\left(4n+3\right)}{4n+3}+\frac{187}{4n+3}=2+\frac{187}{4n+3}\in Z\)
\(\Rightarrow187⋮4n+3\)
\(\Rightarrow4n+3\inƯ\left(187\right)=\left\{11;17\right\}\left(n\in N\right)\)
\(\Rightarrow4n\in\left\{8;14\right\}\)
\(\Rightarrow n=2\) (thỏa mãn)
\(\frac{8n+193}{4n+3}\in N\)
<=> 8n + 193 chia hết cho 4n + 3
<=> 8n + 6 + 187 chia hết cho 4n + 3
<=> 2(4n + 3) + 187 chia hết cho 4n + 3
<=> 187 chia hết cho 4n + 3
<=> 4n + 3 thuộc Ư(187)
<=> 4n + 3 thuộc {-187 ; -17 ; -11 ; -1 ; 1 ; 11 ; 17 ; 187}
mà n thuộc N
=> Không có giá trị nào của n thỏa mãn.
<=> 4n thuộc {-190 ; -20 ; -14 ; -4 ; -2 ; 8 ; 14 ; 184}
<=> n thuộc {-47.5 ; -5 ; -3,5 ; -1 ; -0,5 ; 2 ; 3,5 ; 46}
mà n thuộc N
=> n thuộc {2 ; 46}