Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vo van tuan

Tìm một số chính phương có bốn chữ số biết rằng hai chữ số đầu giống nhau và hai chữ số cuối giống nhau

Isolde Moria
19 tháng 7 2016 lúc 9:18

Gọi số cần tìm là \(\overline{aabb}=n^2\)

(\(1\le a\le9;0\le b\le9;a,b\in n\))

Ta có

\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)

Xét thấy \(\overline{aabb}\) chia hết cho 11

 => a+b chia hết cho 11

Mà \(1\le a+b\le18\)

=> a+b=11 (2)

Thay (2) vào (1) ta có

\(n^2=11^2\left(9a+1\right)\)

=> 9a+1 phải là số chính phương

Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82

=>b=4

Vậy số cần tìm là 7744

 

 

Nguyễn Trang Như
19 tháng 7 2016 lúc 9:13

Giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

emkhongbietlam
7 tháng 3 2017 lúc 10:51

Thử quá nhiều--> mệt quá đi

\(\overline{aabb}=11.\left(100a+b\right)=n^2\)

\(\)\(1000\le\overline{aabb}\le9999\Rightarrow33\le n\le99\)

b phải là số chẵn do số cp không có tận cùng hai số lẻ.

vậy n phải chẵn; n số chẵn chia hết cho 11 => n chia hết cho 22

n={44,66,88}

Thử vào có: 88^2=7744 phù hợp

Vậy: số đó là 7744


Các câu hỏi tương tự
Kirigaya Kazuto
Xem chi tiết
Tôn Nữ Thiên An
Xem chi tiết
Trần Ngọc Tiến
Xem chi tiết
Võ Thùy Như
Xem chi tiết
Nguyễn Long
Xem chi tiết
Phạm Ngọc Nam Phương
Xem chi tiết
nguyễn quốc huy
Xem chi tiết
Bùi Trần Quang Lê
Xem chi tiết
Kang Ha Eun
Xem chi tiết