\(P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{x+4}{x-1}\right):\dfrac{1}{\sqrt{x}-1}\)
ĐKXĐ:
\(x\ne1\)
\(P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{x+4}{\left(\sqrt{x}\right)^2-1}\right):\dfrac{1}{\sqrt{x}-1}\)
\(P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{1}{\sqrt{x}-1}\)\(P=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{1}{\sqrt{x}-1}\)\(P=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)-x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(P=\dfrac{x+3\sqrt{x}+2-x-4}{\sqrt{x}+1}\)
\(P=\dfrac{3\sqrt{x}-4}{\sqrt{x}+1}\)
\(=\dfrac{3\sqrt{x}+3-5}{\sqrt{x}+1}\)
\(=\dfrac{3\left(\sqrt{x}+1\right)-5}{\sqrt{x}+1}=3-\dfrac{5}{\sqrt{x}+1}\)
Với mọi giá trị của x ta có:
\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{5}{\sqrt{x}+1}\le5\)
\(\Rightarrow P\ge3-5=-2\)
Vậy \(Min_P=-2\)
Để P = -2 thì \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)