\(y=\left(3-sinx\right)\left(1-sinx\right)\ge0\)
\(y_{min}=0\) khi \(sinx=-1\)
\(y=sin^2x-4sinx-5+8=\left(sinx+1\right)\left(sinx-5\right)+8\le8\)
\(y_{max}=8\) khi \(sinx=-1\)
\(y=\left(3-sinx\right)\left(1-sinx\right)\ge0\)
\(y_{min}=0\) khi \(sinx=-1\)
\(y=sin^2x-4sinx-5+8=\left(sinx+1\right)\left(sinx-5\right)+8\le8\)
\(y_{max}=8\) khi \(sinx=-1\)
Tìm min, max của :
1. y = \(\sqrt{4-sin^52x}-8\)
2. y = \(\dfrac{4}{\sqrt{5-2cos^2x.sin^2x}}\)
Tìm min max \(y=\frac{\cos^2x+\sin x\cos x}{1+\sin^2x}\)
Tìm min, max
a, y= \(4sin^2x-5sinx.cosx+cos^2x+10\)
b, y= \(\dfrac{sin^2x-2sin2x+1}{3+sin^2x+2cos^2x}\)
c, y= \(2sinx+3cosx+4\)
Tìm GTLN, GTNN:
a, \(y=4\sin^2x-4\sin x+3\).
b, \(y=\cos^2x+2\sin x+2\).
c, \(y=\sin^4x-2\cos^2x+1\).
tìm min, max y=sin3x*cosx-cos3x*sinx
Tìm min, max của hàm số
Y= 2+ sin 2x - 2căn 2 cos 2x
Cho 2 số thực dương a và b thỏa mãn
a, sin (2 - 2ab) - sin (a + b) = 2a + a+ b - 2
Tìm Min của S = a + 2b
b, cos (x + y + 1) + 3 = cos(3xy) + 9xy - 3x - 3y
Tìm Min của S = xy + 2x
Tìm GTLN, GTNN:
a, \(y=4-3\cos2x\).
b, \(y=sin^2x+3\).
c, \(y=2\sin x\cos x+3\).
3. Tìm GTLN, GTNN:
a) \(y=2\sin^2x+3\sin x\cos x-2\cos^2x+5\)
b) \(y=\dfrac{3\sin x-\cos x+1}{\sin x-2\cos x+4}\)
c) \(y=\dfrac{2\left(x^2+6xy\right)}{1+2xy+y^2}\) biết x, y thay đổi thỏa mãn \(x^2+y^2=1\)