Tìm min max \(y=\frac{\cos^2x+\sin x\cos x}{1+\sin^2x}\)
Cho 2 số thực dương a và b thỏa mãn
a, sin (2 - 2ab) - sin (a + b) = 2a + a+ b - 2
Tìm Min của S = a + 2b
b, cos (x + y + 1) + 3 = cos(3xy) + 9xy - 3x - 3y
Tìm Min của S = xy + 2x
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm min, max của :
1. y = \(\sqrt{4-sin^52x}-8\)
2. y = \(\dfrac{4}{\sqrt{5-2cos^2x.sin^2x}}\)
Tìm Min, Max:
\(y=2Sin^2x+3SinxCosx+Cos^2x\)
Tìm min, max
a, y= \(4sin^2x-5sinx.cosx+cos^2x+10\)
b, y= \(\dfrac{sin^2x-2sin2x+1}{3+sin^2x+2cos^2x}\)
c, y= \(2sinx+3cosx+4\)
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
Tìm GTLN, GTNN:
a, \(y=4\sin^2x-4\sin x+3\).
b, \(y=\cos^2x+2\sin x+2\).
c, \(y=\sin^4x-2\cos^2x+1\).
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)