Ta có: \(2x^2+2x+5=2\left(x^2+x+\dfrac{5}{2}\right)=2\left[x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}\right]=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)
=> \(M=\dfrac{1}{2x^2+2x+5}\le\dfrac{1}{\dfrac{9}{2}}=\dfrac{2}{9}\forall x\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy MaxM=\(\dfrac{2}{9}\) khi x=\(-\dfrac{1}{2}\)