Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Nguyễn

Tìm Max của biểu thức :

a) A= \(\frac{15}{4.\left|3x+7\right|+3}\)+5

b) B= \(\frac{-1}{3}\)+\(\frac{21}{8.\left|15x-21\right|+7}\)

c) C= |x+1| + |3x-4|+ |2x-1|+5

soyeon_Tiểubàng giải
31 tháng 10 2016 lúc 13:18

a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất

Có: \(4.\left|3x+7\right|+3\ge3\forall x\)

Dấu "=" xảy ra khi |3x + 7| = 0

=> 3x + 7 = 0

=> 3x = -7

\(\Rightarrow x=\frac{-7}{3}\)

Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10

Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)

b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất

Có: \(8.\left|15x-21\right|+7\ge7\forall x\)

Dấu "=" xảy ra khi |15x - 21| = 0

=> 15x - 21 = 0

=> 15x = 21

\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)

Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)

Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)

c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)

\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)

hay \(C\ge9\)

Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)

Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)


Các câu hỏi tương tự
Hot girl Quỳnh Anh
Xem chi tiết
Trần Quang Hiếu
Xem chi tiết
Hà Mai
Xem chi tiết
Phan Mai Hoa
Xem chi tiết
Nguyễn Bảo Trân
Xem chi tiết
kate winslet
Xem chi tiết
Bùi Hiền Thảo
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Hiền Thương
Xem chi tiết