Lời giải:
Theo đề thì cần tìm $m$ để đths đã cho cho TCĐ $x=2$
Điều này xảy ra khi mà $2x+2m=0$ tại $x=2$
$\Leftrightarrow m=-x=-2$
Đáp án B.
Lời giải:
Theo đề thì cần tìm $m$ để đths đã cho cho TCĐ $x=2$
Điều này xảy ra khi mà $2x+2m=0$ tại $x=2$
$\Leftrightarrow m=-x=-2$
Đáp án B.
tìm m để đồ thị hàm số \(y=\dfrac{x-m}{x^2+3x+4}\) có đúng 1 đường tiệm cận đứng
tìm m để đồ thị hàm số \(y=\dfrac{2x^2-3x+m}{x-m}\) không có tiệm cận đứng
Câu 1 : Phương trình đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x-2}{x+1}\)
A. x = 3 B. x = -1 C. y = 3 D. y = -1
Câu 2 : Phương trình đường tiệm cận đứng của đồ thị hàm số \(y=\frac{-2x}{x-2}\) là :
A. x = 2 B. x = -2 C. y = -2 D. y = 2
Câu 3 : Phương trình đường tiệm cận ngang của đồ thị hàm số \(y=\frac{x-2}{x^2-1}\)
A. y = 0 B. y = 1 C. y = -1 D. y = 2
Câu 4 : Đồ thị hàm số \(y=\frac{x-1}{x^2-x}\) có bao nhiêu đường tiệm cận ?
A. 2 B. 1 C. 3 D. 0
tìm m để đồ thị hàm số \(y=\sqrt{2x^2+mx}+mx+2m^2\) có tiệm cận ngang
Tìm m để Đồ thị của hàm số y=\(\dfrac{x^2+m}{x^2+mx}\) có 3 đường tiệm cận
Câu 1: Tìm m để đồ thị hàm số y = \(\sqrt{4x^2+mx+1}-2x+1\)có tiệm cận đứng là đường thẳng y = \(\dfrac{3}{2}\)
Câu 2: Tổng các giá trị m để đồ thị hàm số y =\(\dfrac{x-1}{x^2-3x-m}\) có đúng một tiệm cận đứng
Câu 3: Tìm các giá trị của m để đồ thị hàm số y =\(\dfrac{x+1}{\sqrt{mx^2+1}}\)có 2 tiệm cận ngang
Chân thành cảm ơn đã chú ý!!
Cho hàm số y= 2x +1/ x +1 có đồ thị (C) và đường thẳng d: y= mx +3 .Biết đường thẳng đi qua giao điểm 2 đường tiệm cận của (C). Khi đó giá trị m là? (Toán 12)
Câu 1 : Tìm m sao cho giao điểm hai đường tiệm cận của đồ thị hàm số \(y=\frac{mx-3}{x+1}\) nằm trên đường thẳng \(y=x+3\)
A. m = 4 B. m = 1 C. m = 2 D. m = -4
Câu 2 : Số đường tiệm cận của đồ thị hàm số \(y=\frac{\sqrt{x-2}}{x^2-4}\)
A. 3 B. 4 C. 2 D. 1
Câu 3 : Có bao nhiêu số nguyên \(m\in\left[-5;5\right]\) sao cho đồ thị hàm số \(y=\frac{x-1}{x^2-mx+5}\) có đúng hai tiệm cận đứng ?
A. 6 B. 7 C. 5 D. 11
HELP ME !!!
Gọi S là tập hợp các giá trị nguyên của m sao cho đồ thị hàm số y = \(\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}\) có bốn đường tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang). Tính số phần tử của tập S