\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\2x^2-2x+m=\left(x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\-x^2+4x+1=m\end{matrix}\right.\)
Xét hàm \(f\left(x\right)=-x^2+4x+1\) với \(x\ge-1\)
\(-\dfrac{b}{2a}=2>-1\) ; \(f\left(-1\right)=-4\) ; \(f\left(2\right)=5\)
\(\Rightarrow f\left(x\right)\le5\) ;\(\forall x\ge-1\)
\(\Rightarrow\) Pt đã cho có nghiệm khi \(m\le5\)