Cho pt - x^2 +2(m-1)x+m^2+1=0 Chứng tỏ pt luôn có nghiệm vs mọi m Gọi x1 x2 là nghiệm của phương trình trên tìm giá trị của m để 1:x1+1:x2 ko âm
Bài 2: Cho phương trình x2-2mx+2m-2=0 (1) (m là tham số)
a) Giải phương trình (1) khi m=1
b) Chứng minh phương trình (1) luôn có 2 nghiệm x1,x2. Tìm m để x12 +x22 =12
tìm m để pt: x2 - 2x - (m - 1)(m - 3) = 0 có 2 nghiệm x1, x2 sao cho A = (x1 + 1).x2 đạt GTLN
Định m để phương trình có nghiệm thỏa mán hệ thức đã chỉ ra :
a) x2 +2mx-3m-2=0; 2x1-3x2=1
b)x2-4mx+4m2-m=0; x1=3x2
C)mx2+2mx+m-4=0; 2x1+x2+1=0
d)x2-(3m-1)x+2m3=0; x1=x22
e)x2+92m-8)x+8m3=0 x1=x22
f)x2-4x+m2+3m=0 x12+x2=6
Tìm m để pt:\(x^2-\left(3m-1\right)+2m^2-m=0\) có 2 nghiệm x1, x2 sao cho x1 = x22
Cho phương trình x2 -2.(m-1) x+2m - 5 = 0 (1) với m là tham số.
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2
b) Tìm các giá trị của m để ( x12 - 2mx1 +2m - 1) (x2 -2 ) \(\le\) 0
\(x^4-2mx^2+2m-1=0 \) (1)
Tìm m để pt (1) có 4 nghiệm x1; x2 ;x3 ;x4 sao cho x1<x2<x3<x4 và x4 - x1= 3
tìm m để phương trình :\(mx^2-2\left(m+1\right)x+2=0\left(1\right)\) có 2 nghiệm phân biệt x1 ,x2. khi đó hãy lập phương trình có các nghiệm như sau:
a) - 3x1 và - 2x2
b) x1 + x2 và x1.x2