Tìm m để phương trình có nghiệm
\(\sqrt{2x^2-2\left(m+4\right)x+5m+10}-x+3=0\)
Cho phương trình: x2-(m-2)x+m(m-3)=0. Tìm các giá trị m để phương trình có 2 nghiệm phân biệt.
1.Cho phương trình x2 +4x-m=0(1).Tìm tất cả các giá trị của tham số m để phương trinh (1) có đúng 1 nghiệm thuộc khoảng (-3,1)
2.Có bao nhiêu giá trị m nguyên trong nửa khoảng (0;2019] để phương trình |x2 -4|x|-5|-m có hai nghiệm phân biệt
Tìm m để phương trình sau có nghiệm:
\(\sqrt{x^2}-2x+2=2m+1-2x^2+4x\)
x^2 -2x +m=0:tìm m để phương trình có hai nghiệm dương phân biệt
1) Cho phương trình: \(x^2+\frac{1}{x^2}+4\left(x+\frac{1}{x}\right)-3-2m=0\). Tìm m để phương trình có nghiệm.
2) Cho phương trình: \(x^2-2x+3-\left(m+1\right)\sqrt{x^2-2x+5}-m=0\). Tìm m để phương trình có nghiệm.
Cho hàm số y= f(x)= ax^2 + bx+c có đồ thị như hình vẽ bên.( dưới bình luận) Có bao nhiêu giá trị nguyên m để phương trình f^2(|x|)+(m- 2019) f (|x|)+m– 2020 =0 có 6 nghiệm phân biệt
Tìm m để phương trình sau vô nghiệm:\(x^2+2x+\sqrt{x^2+2x+5}+3-m+m^2=0\)
Cho phương trình \(x^2-2\left(m-2\right)x+m-3=0\). Định m
a, Phương trình có 2 nghiệm phân biệt trên \(\left(1;+\infty\right)\)
b, có nghiệm trên \(\left(1;+\infty\right)\)
c, có đúng 1 nghiệm trên \(\left(1;+\infty\right)\)
. Dùng phương pháp bảng biến thiên .
Giúp với ạ, mình cảm ơn nhiều.