có 2 nghiệm phân biệt
Câu 1:Tập hợp nghiệm của phương trình \(\dfrac{X^2-4x-2}{\sqrt{x-2}}=\sqrt{X-2}\)
Câu2: tìm tham số m để phương trình sau
vô nghiệm: \(\left\{{}\begin{matrix}mx+y+m=0\\x+my+m=0\end{matrix}\right.\)
Xác định m để mỗi cặp phương trình sau tương đương :
a) \(3x-1=0\) và \(\dfrac{3mx+1}{x-2}+2m-1=0\)
b) \(x^2+3x-4=0\) và \(mx^2-4x-m+4=0\)
Tìm m để phương trình ( \(x^2\)+ 1/ \(x^2\)) - 2m ( x + \(\dfrac{1}{x}\)) + 1 = 0 có nghiệm
bài tập : Tìm m để các phương trình sau nghiệm đúng với mọi X
a,\(mx^2-4\left(m-1\right)x+m-5< =0\)
b, \(m\left(m+2\right)x^2+2mx+2>0\)
c, \(mx^2+9\left(m-1\right)x+m-1< 0\)
MỌI NGƯỜI GIÚP EM BÀI NÀY VỚI Ạ!!!
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
Tìm m để pt sau có nghiệm: \(\sqrt{x^2-2mx+1}=m-2\)
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình x2-(m+2)x+m=0 có hai nghiệm phân biệt x1,x2 sao cho \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}>1\)