Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình x2-(m+2)x+m=0 có hai nghiệm phân biệt x1,x2 sao cho \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}>1\)
1) \(2x-x^2-\sqrt{6x^2-12x+7}=0\)
2) cho phương trình x2 - 2(m+1)x+m2+3=0 .Xác định m để phương trình có 2 nghiệm phân biệt x1 ,x2 thoả \(x_1^2+x_2^2=2x_1x_2+8\)
tìm m để phương trình (2m+1)x2+3(m+1)x+m+1=0 có nghiệm
Cho phương trình :
\(\left(m+1\right)x^2+\left(3m-1\right)x+2m-2=0\)
Xác định m để phương trình có hai nghiệm \(x_1;x_2\) mà \(x_1+x_2=3\). Tính các nghiệm trong trường hợp đó ?
Cho PT a) (m-1)x^2-(2m-1)x+m+1=0.Tìm m để phương trình luôn có 2 nghiệm phân biệt và nghiệm này gấp 3 lần nghiệm kia
b) 3x^2+4(m-1)x+m^2-4m+1=0.Tìm m để phương trình luôn có 2 nghiệm phân biệt x1, x2 sao cho 1/x1+1/x2=1/2(x1+x2)
c) 3x^2-2(m-1)x+3m-5=0.Tìm m để phương trình luôn có 2 nghiệm phân biệt x1, x2 sao cho x1-x2=0
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
Xác định m để mỗi cặp phương trình sau tương đương :
a) \(3x-1=0\) và \(\dfrac{3mx+1}{x-2}+2m-1=0\)
b) \(x^2+3x-4=0\) và \(mx^2-4x-m+4=0\)