Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Linh

Tìm m để hệ có nghiệm (x, y) thỏa mãn điều kiện \(x\ge4\)

\(\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}\le m\end{cases}\)

Đặng Minh Quân
24 tháng 3 2016 lúc 14:30

\(\begin{cases}\sqrt{x}+\sqrt{y}=3\left(1\right)\\\sqrt{x+5}+\sqrt{y+3}\le m\left(2\right)\end{cases}\)

Điều kiện \(\begin{cases}x\ge0\\y\ge0\end{cases}\)

Đặt \(t=\sqrt{x}\) lúc đó (1) có dạng \(\sqrt{y=3-1}\Leftrightarrow y=\left(t^2-6t+9\right)\)

Điều kiện của t : \(2\le t\)\(\le3\)

Khi đó (2) \(\Leftrightarrow\sqrt{t^2+5}+\sqrt{t^2-6t+12}\le m\)

Xét hàm số : \(f\left(t\right)=\sqrt{t^2+5}+\sqrt{t^2-6t+12}\)

- Miền xác định \(D=\left[2;3\right]\)

- Đạo hàm 

\(f'\left(t\right)=\frac{t}{\sqrt{t^2+5}}+\frac{t-3}{\sqrt{t^2-6t+12}}\)

\(f'\left(t\right)=0\Leftrightarrow\frac{t}{\sqrt{t^2+5}}=\frac{3-t}{\sqrt{t^2-6t+12}}\)

                \(\Leftrightarrow t\sqrt{t^2-6t+12}=\left(3-t\right)\sqrt{t^2+5}\)

                \(\Leftrightarrow t^4-6t^3+12t^2=t^4-6t^3+14t^2-30t+45\)

                \(\Leftrightarrow2t^2-30t+45=0\) vô nghiệm với \(x\in D\)

Mà \(f'\left(3\right)>0\Rightarrow f\left(t\right)\) đồng biến trên D do đó min \(f\left(2\right)=5\)

Để có nghiệm (x,y) thỏa mãn \(x\ge4\Leftrightarrow\) (2) có nghiệm thỏa mãn (1)

và \(x\ge4\Leftrightarrow f\left(t\right)\le m\) thỏa mãn với mọi \(2\le t\)\(\le3\)

                \(\Leftrightarrow\) min \(f\left(t\right)\le m\Leftrightarrow m\ge5\)


Các câu hỏi tương tự
Thiên An
Xem chi tiết
Đỗ Hạnh Quyên
Xem chi tiết
Nguyễn Trọng Hiếu
Xem chi tiết
Hà Mi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Ngọc Phương Linh
Xem chi tiết
Nguyễn Nam
Xem chi tiết
Trần Đào Tuấn
Xem chi tiết
Nguyễn Kiều Yến Nhi
Xem chi tiết