1,
cho a,b,c,d là các số thực khác 0. biết c và d là 2 nghiệm của pt x2+ax+b=0 và a,b là 2 nghiệm của pt x2+cx+d=0. tính giá trị của biểu thức S=a+b+c+d
2,
có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-5;5\right]\) để pt \(\left|mx+2x-1\right|=\left|x-1\right|\) có đúng 2 nghiệm phân biệt
3,
có bao nhiêu giá trị nguyên của tham số m để pt \(\left(\frac{x^2}{x-1}\right)^2+\frac{2x^2}{x-1}+m=0\) có đúng 4 nghiệm
Tìm m nguyên dương để hàm số \(y=\sqrt{x+m}-\frac{1}{2x-m+1}\) xác định trên \(\left(1;2\right)\cup\left[4;+\infty\right]\)
Tìm tất cả hàm số liên tục f : \(R-R\) thỏa mãn điều kiện
\(f\left(xy\right)=f\left(\frac{x^2+y^2}{2}\right)+\left(x-y\right)^2\)
Cho a,b,c>0 thỏa mãn \(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge\left(abc\right)^2\)
Chứng minh rằng \(\frac{\left(ab\right)^2}{\left(a^2+b^2\right)c^3}+\frac{\left(bc\right)^2}{\left(b^2+c^2\right)a^3}+\frac{\left(ac\right)^2}{\left(a^2+c^2\right)b^3}\ge\frac{\sqrt{3}}{2}\)
cho hệ pt \(\left\{{}\begin{matrix}\left(2m-3\right)x-my=3m-2\\5x-\left(2m+3\right)y=5\end{matrix}\right.\) có bao nhiêu giá trị m để hệ đã cho có nghiệm duy nhất (x;y) thỏa mãn điều kiện 2x+3y=-27
Ai giải giúp mình mấy bài này với :'( Thanks nhiều ạ :* <3
Bài 1: Cho 2 tập hợp A=(m;m+2) và B=(-3;5). Tìm m để \(A\cup B\) là 1 khoảng, hãy xác định các khoảng đó
Bài 2: Cho biểu thức \(f\left(x\right)=\dfrac{x+m}{2m+1-x}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left(-1;0\right)\)
Bài 3: Cho biểu thức \(f\left(x\right)=\sqrt{2x-m}+\sqrt{x-m-2}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left(1;+\infty\right)\)
Bài 4: Cho biểu thức \(f\left(x\right)=\sqrt{x-2m}+\sqrt{3m-x}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left[\dfrac{3}{2};2\right]\)
Hơi dài chút xíu :p mong mọi người giúp mình nhiệt tình nhé :* Thanks các bạn lần nữa <3
Cho (P): y = \(x^2-3x+1\) và (d) : y = \(\left(2m^2+1\right)x+2\) và điểm M(3;3). Tìm m để (P) cắt (d) tại hai điểm phân biệt A,B sao cho tam giác MBA vuông cân tại M
Cho A ={x∈R| \(\frac{2}{\left|x-3\right|}\)≥ 1} B=(m;m+2] . Tìm m để B⊂A
Cho A = {x∈R| \(\frac{2}{\left|x-3\right|}\)≥1} và B = [1;6] . Tìm tất cả giá trị của tham số m để B⊂A