Cho A = {x∈R| \(\frac{2}{\left|x-3\right|}\)≥1} và B = [1;6] . Tìm tất cả giá trị của tham số m để B⊂A
\(\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}\)
a. Tìm điều kiện xác định và rút gọn
b. Tìm x để A >1
c. tìm GTLN của: B= A. \(\dfrac{3x}{x^2+2}\)
Cho 2 tập hợp:
\(A=\left\{x\in R,x+2>m\right\}\)
\(B=\left\{x\in R,x\le1\right\}\)
Tìm m để \(A\cup B\)
1,
cho a,b,c,d là các số thực khác 0. biết c và d là 2 nghiệm của pt x2+ax+b=0 và a,b là 2 nghiệm của pt x2+cx+d=0. tính giá trị của biểu thức S=a+b+c+d
2,
có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-5;5\right]\) để pt \(\left|mx+2x-1\right|=\left|x-1\right|\) có đúng 2 nghiệm phân biệt
3,
có bao nhiêu giá trị nguyên của tham số m để pt \(\left(\frac{x^2}{x-1}\right)^2+\frac{2x^2}{x-1}+m=0\) có đúng 4 nghiệm
Cho A = {x ∈ R|x - 2m - 1 ≥ 0} B = {x ∈ R| x² - (2m + 1)x + 2m ≤ 0 Tìm m để A ∩ B khác ∅ Tìm m để A \ B = A
Ai giải giúp mình mấy bài này với :'( Thanks nhiều ạ :* <3
Bài 1: Cho 2 tập hợp A=(m;m+2) và B=(-3;5). Tìm m để \(A\cup B\) là 1 khoảng, hãy xác định các khoảng đó
Bài 2: Cho biểu thức \(f\left(x\right)=\dfrac{x+m}{2m+1-x}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left(-1;0\right)\)
Bài 3: Cho biểu thức \(f\left(x\right)=\sqrt{2x-m}+\sqrt{x-m-2}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left(1;+\infty\right)\)
Bài 4: Cho biểu thức \(f\left(x\right)=\sqrt{x-2m}+\sqrt{3m-x}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left[\dfrac{3}{2};2\right]\)
Hơi dài chút xíu :p mong mọi người giúp mình nhiệt tình nhé :* Thanks các bạn lần nữa <3
Tìm A \(\cup\) B, A \(\cap\) B, A \ B, B \ A, CRA, CRB và biểu diễn chúng trên trục số:
a) A= {x ϵ R | x<0 hay x \(\ge\) 2}, B= {x ϵ R | -4 \(\le\) x \(\le\) 3}
b) A= {x ϵ R | 2 < |x| < 3}, B= {x ϵ R | |x| \(\ge\) 4}
c) A= {x ϵ R | \(\frac{1}{\left|x-2\right|}>2\)}, B= {x ϵ R | |x-1| <1}
Câu 1 : Cho biểu thức \(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)
a ) Rút gọn P
b ) Tìm các giá trị nguyên của x để P < 0
c ) Với giá trị nào của x thì biểu thức \(\dfrac{1}{P}\) đạt GTNN .
Câu 2 :
Giải phương trình sau : \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}=2\)
Câu 3 :
a ) Cho \(x\ge1,y\ge1\) . Chứng minh : \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
b ) Cho hai số tự nhiên m và n thỏa mãng \(\dfrac{m+1}{n}+\dfrac{n+1}{m}\) là số nguyên . Chứng minh rằng :
Ước chung lớn nhất của m và n ko lớn hơn \(\sqrt{m+n}\)Akai Haruma
Cho a,b,c>0 thỏa mãn \(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge\left(abc\right)^2\)
Chứng minh rằng \(\frac{\left(ab\right)^2}{\left(a^2+b^2\right)c^3}+\frac{\left(bc\right)^2}{\left(b^2+c^2\right)a^3}+\frac{\left(ac\right)^2}{\left(a^2+c^2\right)b^3}\ge\frac{\sqrt{3}}{2}\)