y'=3x2-2(2m-3)x-(4m-15)
để hs y có cực trị thì y'=0 có 2 nghiệm phân biệt
Δ,=(2m-3)2-3(4m-15)>0
<=> 4m2-24m+54>0
<=>(2m-6)2+18>0 với mọi m
=> hs luôn có cực trị với mọi m
y'=3x2-2(2m-3)x-(4m-15)
để hs y có cực trị thì y'=0 có 2 nghiệm phân biệt
Δ,=(2m-3)2-3(4m-15)>0
<=> 4m2-24m+54>0
<=>(2m-6)2+18>0 với mọi m
=> hs luôn có cực trị với mọi m
y=x3-(2m+2)x2+(4m2+4m-3)x-8m2+6. Tìm tất cả các giá trị tham số m để (C) và trục Ox đúng một giao điểm
Bài 4: Tìm giá trị của tham số m để hàm số: a) y=mx3 +mx2 −x+1 có cực đại, cực tiểu. b) y=x4 +(m−1)x2+1 có 3 cực trị.
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Tìm tất cả các giá trị thực của m để hàm số y=mx^4 - (m+1)x^2 + 2m -1 có 3 cực trị
Cho hàm số f(x) = (m - 1)x3 - 5x2 + (m+3)x + 3. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f(\(\left|x\right|\)) có đúng 3 điểm cực trị?
Cho hàm số \(y=x^4-2m\left(m+1\right)x^2+m^2\) với m là tham số thực.
a) Tìm m để đồ thị hàm số trên có 3 cực trị tạo thành 3 đỉnh của tâm giác vuông
b) Tìm m để đồ thị hàm số trên có 3 cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^3 - (3m +1).x^2 + (2m -1)x +m +1 . Có bao nhiêu số tự nhiên m<100 để đồ thị hs có hai điểm cực trị nằm về 2 phía của trục hoành.
Cho hàm số \(y=-2x^3+(2m-1)x^2-(m^2-1)x+2\). Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có hai điểm cực trị?
Tìm m để hàm số \(y=\frac{1}{3}x^3-mx^2+\left(2m-1\right)x+2\) có 2 điểm cực trị dương