\(A^3_n-2\cdot C^2_n=4C^3_{n+1}\)(ĐK: n>=3)
=>\(\dfrac{n!}{\left(n-3\right)!}-2\cdot\dfrac{n!}{\left(n-2\right)!\cdot1}=4\cdot\dfrac{\left(n+1\right)!}{\left(n-2\right)!\cdot3!}\)
=>\(n\left(n-1\right)\left(n-2\right)-n\left(n-1\right)=4\cdot\dfrac{\left(n-1\right)\cdot n\cdot\left(n+1\right)}{6}\)
=>n(n-1)(n-3)=2/3(n-1)*n*(n+1)
=>n(n-1)(n-3-2/3n-2/3)=0
=>1/3n-11/3=0
=>n=11
=>(x^2-2/x)^11
SHTQ là: \(C^k_{11}\cdot\left(x^2\right)^{11-k}\cdot\left(-\dfrac{2}{x}\right)^k=C^k_{11}\cdot\left(-2\right)^k\cdot x^{22-3k}\)
SHTƯ với x^7 sẽ tương ứng vơi 22-3k=7
=>k=5
=>Hệ số là \(C^5_{11}\cdot\left(-2\right)^5\)