\(y=3\left(cosx-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
\(y_{min}=\frac{8}{3}\) khi \(cosx=\frac{1}{3}\)
\(y=8+\left(3cos^2x-2cosx-5\right)=8+\left(cosx+1\right)\left(3cosx-5\right)\le8\)
\(y_{max}=8\) khi \(cosx=-1\)
\(y=3\left(cosx-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
\(y_{min}=\frac{8}{3}\) khi \(cosx=\frac{1}{3}\)
\(y=8+\left(3cos^2x-2cosx-5\right)=8+\left(cosx+1\right)\left(3cosx-5\right)\le8\)
\(y_{max}=8\) khi \(cosx=-1\)
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
Tìm GTLN và GTNN của hàm số y = √3cosx - sinx
tìm gtln và gtnn của hàm số
a) y = sinxcox + 1
b) \(y=\sqrt{3}sinx-cosx-2\)
GTLN của hàm số y = sin2x + 2cosx +2
Tìm GTLN, GTNN của hàm số : y= -2sin2x + 3sinx -1
Tìm GTNN, GTLN của hàm số y= 2sin2x + 3cosx -1 trên đoạn \(\left[\dfrac{-\pi}{3};\dfrac{2\pi}{3}\right]\)
tìm GTLN,GTNN của hàm số \(y=1-2cosx-2\left(sinx\right)^2\)
Tìm GTLN; GTNN của các hàm số:
\(a,y=2sin^2x-cos2x\)
\(b,y=3\sqrt{1+sinx}-1\) trên đoạn \(\left[0;\dfrac{\pi}{3}\right]\)
tìm GTLN, GTNN của hàm số
a/ y=1-2sinx
b/ y=cosx-\sqrt(3)\sin x+2021