\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
Có \(\sqrt{x}+2\ge2\forall x\ge0\)
\(\Rightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Rightarrow-\dfrac{3}{\sqrt{x}+2}\ge-\dfrac{3}{2}\)\(\Leftrightarrow1-\dfrac{3}{\sqrt{x}+2}\ge1-\dfrac{3}{2}=-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\ge-\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0
Vậy \(min=-\dfrac{1}{2}\Leftrightarrow x=0\)