Ta có : x2+y2-4x+y+5
=(x2-4x)+(y2+y)+5
=(x2-4x+4)+(y2+2.\(\frac{1}{2}\)y+\(\frac{1}{4}\))+5-4-\(\frac{1}{4}\)
=(x-2)2+(y+\(\frac{1}{2}\))2+\(\frac{3}{4}\le\frac{3}{4}\)
Dấu = xảy ra khi : \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+\frac{1}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\frac{1}{2}\end{matrix}\right.\)
Vậy Min của biểu thức = \(\frac{3}{4}\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\frac{1}{2}\end{matrix}\right.\)