\(P\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)
Đặt \(\left(\frac{4}{a+b};\frac{4}{b+c};\frac{4}{c+a}\right)=\left(x;y;z\right)\Rightarrow\frac{3}{4}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
\(\Rightarrow xyz\ge64\)
\(P=\left(3+x\right)\left(3+y\right)\left(3+z\right)\)
\(P=xyz+3\left(xy+yz+zx\right)+9\left(x+y+z\right)+27\)
\(P\ge xyz+3.3\sqrt[3]{\left(xyz\right)^2}+9.3\sqrt[3]{xyz}+27\)
\(P\ge64+3.3.\sqrt[3]{64^2}+27.4+27=...\)