câu F
chia khoảng cho nhàn: dẽ kiểm soát.
xét khi x<5/3
\(F=\left[\left(3x-5\right)^2+6\left(3x-5\right)+9\right]+1\)
\(F=\left[\left(3x-5\right)+3\right]^2+1\ge1\) đẳng thức khi \(3x-5+3=0\Rightarrow x=\dfrac{2}{3}< \dfrac{5}{3}\left(tmdk\right)\)
xét khi x>=5/3 Tương tự
\(F=\left[\left(3x-5\right)-3\right]+1\ge1\)
đẳng thức khia (3x-5)-3=0=> x=8/3 thủa mãn điều kiện
Kết luận: GTNN (F)=1 khi x=2/3 hoặc 8/3
câu I:
\(I=\dfrac{10x^2+41x+40}{x}\)
\(1-I=1-\dfrac{10x^2+41x+40}{x}=\dfrac{-\left(10x^2+40x+40\right)}{x}=\dfrac{-10\left(x+2\right)^2}{x}=A\)
Xem lại đề: khi x> không có GTLN;{sửa x<0}
\(\left\{{}\begin{matrix}x< 0\\A\ge0\end{matrix}\right.\) đẳng thức khi x=-2 \(\Rightarrow GTLN\left(I\right)\le1\)