\(P=\frac{x^3-27}{x-3}+5x=\frac{\left(x-3\right)\left(x^2+3x+9\right)}{x-3}+5x\)
\(=x^2+8x+9=\left(x+4\right)^2-7\ge-7\)
Vậy GTNN là -7 đạt được khi x = -4
\(\dfrac{x^3-27}{x-3}+5x\)
=\(\dfrac{\left(x-3\right)\left(x^2+3x+9\right)}{x-3}+5x\)
=\(x^2+3x+9+5x\)
=\(x^2+8x+9\)
=\(x^2+2.x.4+4^2-7\)
=\(\left(x+4\right)^2-7\ge-7\)
Vậy GTNN là -7 khi x+4=0\(\Rightarrow x=-4\)