tìm giá trị nhỏ nhất của biểu thức:P=5(2x^2-2xy+y^2)+2(y-3x+2)
cho 2 số dương x,y sao cho x+y=1. Tìm GTNN của biểu thức:
P=\(\dfrac{1}{xy}+\dfrac{1}{x^{2}+y^{2}}\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
GTNN của biểu thức \(A=3x^2+y^2+2xy+4x\)
gọi x1,x2 là 2 nghiệm của phương trình \(3x^2+5X-6=0\) không giải phương trình hãy lập phương trình bậc hai ẩn y có 2 nghiệm y1,y2 thỏa mãn y1=2x1-x2 và y2=2x2-x1
Tìm GTNN của biểu thức M= x^2 +2y^2 -x +2xy+5
cho x,y>0 và \(2x^2+2xy+y^2-2x\le8\). tìm GTNN của \(P=\dfrac{2}{x}+\dfrac{4}{y}-2x-3y\)
Cho 3 số thực dương x, y, z. Tính giá trị lớn nhất của biểu thức:
P=\(\dfrac{x}{3x+y+z}+\dfrac{y}{3y+z+x}+\dfrac{z}{3z+x+y}\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)