Bài 1:
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x-2018\right|+\left|x-1\right|=\left|2018-x\right|+\left|x-1\right|=\left|2018-x+x-1\right|=2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}2018-x\ge0\\x-1\ge0\end{matrix}\right.\Rightarrow1\le x\le2018\)
Vậy MIN A = 2017 khi \(1\le x\le2018\)
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{10}=\dfrac{y}{7}=\dfrac{z}{23}=\dfrac{2x}{20}=\dfrac{y}{7}=\dfrac{z}{23}=\dfrac{2x+y-z}{4}=\dfrac{12}{4}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\\y=21\\z=69\end{matrix}\right.\)
Vậy...