Ta có:
\(1A=\frac{x^2+y^2}{x-y}=\frac{x^2-2xy+y^2+2}{x-y}\)
\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(=\left(\sqrt{x-y}-\frac{\sqrt{2}}{\sqrt{x-y}}\right)^2+2\sqrt{2}\ge2\sqrt{2}\)
Ta có:
\(1A=\frac{x^2+y^2}{x-y}=\frac{x^2-2xy+y^2+2}{x-y}\)
\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(=\left(\sqrt{x-y}-\frac{\sqrt{2}}{\sqrt{x-y}}\right)^2+2\sqrt{2}\ge2\sqrt{2}\)
Tìm GTNN của biểu thức:
A=(x+y+1)^2/(xy+x+y) + (xy+x+y)/(x+y+1)^2 ( với x,y là các số thực dương)
Tìm đk x,y để A>0: A=\(\left(\frac{x^2-xy}{y^2+xy}+\frac{x^2+y^2}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x-y}\right)\)
Bài 1. Tìm GTNN của A.
A =\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Bài 2. Rút gọn biểu thức và tính giá trị với x + y = 2005
P = \(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Bài 3. Cho b>a>0 và \(\frac{a^2+b^2}{ab}\) = \(\frac{10}{3}\)
Tính A = \(\frac{a-b}{a+b}\)
bài 1)tìm GTNN của biểu thức a)y=3x/2+1/x+1
b)y=x^2+4x+4/x với x>0
Cho x;y;z > 1;x+y+z=1
Tìm GTNN của \(M=\frac{x-2}{z^2}+\frac{y-2}{x^2}+\frac{z-2}{y^2}\)
Bài 1 : Tính giá trị biết với x = -1 ; y=3 :
A=x^2y-y+xy^2-x
B=x^2y^2+xy+x^3+y^3
C=2x+xy^2-x^2y-2y
D=3x^3-2y^3+6x^2y^2+xy
Bài 2 : f(x)= 3x-6 ; g(t)=-4t+8 . Tìm giá trị biến để :
a ) f(x)=0;g(t)=0
b) f(x)=1;g(t)=1
c) f(x)>0;g(t)>0
d ) f(x)<0;g(t)<1
1.GTNN của biểu thức \(x^2-2xy+2y^2+2x-6y+10\)
2.Nếu x + y + z = 0 và xyz khác 0 thì gtbt của A\(=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}\)
Cho x + y + z = 3
a, Tìm GTNN của A = x2 + y2 + z2
b, Tìm GTNN của B = xy + yz + zx
c, Tìm GTNN của C = A + B
Bài 2 Rút gọn
A=(\(x-\frac{4xy}{x+y}+y\)):(\(\frac{x}{x+y}-\frac{y}{x-y}-\frac{2xy}{x^2-y^2}\))
B=(\(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)):\(\frac{x^2+4x^2y^2+y^4-4}{x^2+y+xy+x}\):\(\frac{1}{2x^2+y+2}\)