Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}=\frac{x^2y^2}{xyz}+\frac{y^2z^2}{xyz}+\frac{z^2x^2}{xyz}\)
\(\geq \frac{(xy+yz+xz)^2}{3xyz}\) (1)
Áp dụng BĐT AM-GM:
\(x^2y^2+y^2z^2\geq 2xy^2z\)
\(y^2z^2+z^2x^2\geq 2xyz^2\)
\(x^2y^2+z^2x^2\geq 2x^2yz\)
\(\Rightarrow 2(x^2y^2+y^2z^2+z^2x^2)\geq 2xyz(x+y+z)\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz(x+y+z)\)
\(\Leftrightarrow (xy+yz+xz)^2\geq 3xyz(x+y+z)\) (2)
Từ (1),(2) suy ra \(A\geq \frac{(xy+yz+xz)^2}{3xyz}\geq \frac{3xyz(x+y+z)}{3xyz}\)
\(\Leftrightarrow A\geq x+y+z=1\)
Vậy \(A_{\min}=1\Leftrightarrow x=y=z=\frac{1}{3}\)