\(B=\dfrac{1}{2\left(x-1\right)^2+3}\)
Xét \(2\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2\left(x-1\right)^2+3\ge3\)
\(\Rightarrow\)\(B=\dfrac{1}{2\left(x-1\right)^2+3}\le\dfrac{1}{3}\)
Vậy GTLN của B là \(\dfrac{1}{3}\) \(\Leftrightarrow x=1\)
\(A=\dfrac{1}{2\left(x-1\right)^2+3}\)
\(2\left(x-1\right)^2\ge0\)
Suy ra:
\(2\left(x-1\right)^2+3\ge3\)
\(A=\dfrac{1}{2\left(x-1\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)