Lời giải:
a)
\(C=2x^2+x-15=2(x^2+\frac{x}{2}+\frac{1}{4^2})-\frac{121}{8}\)
\(=2(x+\frac{1}{4})^2-\frac{121}{8}\)
Vì \((x+\frac{1}{4})^2\geq 0, \forall x\Rightarrow C\geq 2.0-\frac{121}{8}=-\frac{121}{8}\)
Vậy \(C_{\min}=\frac{-121}{8}\Leftrightarrow x=-\frac{1}{4}\)
b) Ta có:
\(D=3x^2+10x+20=3(x^2+\frac{10}{3}x+\frac{5^2}{3^2})+\frac{35}{3}\)
\(=3(x+\frac{5}{3})^2+\frac{35}{3}\)
Vì \((x+\frac{5}{3})^2\geq 0, \forall x\in\mathbb{R}\) \(\Rightarrow D\geq 3. 0+\frac{35}{3}=\frac{35}{3}\)
Vậy \(D_{\min}=\frac{35}{3}\Leftrightarrow x=-\frac{5}{3}\)