\(f\left(x\right)=x^4-4x^3+4x^2-5x^2+10x-3\)
\(=\left(x^2-2x\right)^2-5\left(x^2-2x\right)-3\)
Đặt \(t=x^2-2x\Rightarrow t\in\left[-1;8\right]\)
Xét hàm \(f\left(t\right)=t^2-5t-3\) trên \(\left[-1;8\right]\)
\(f\left(-1\right)=3\) ; \(f\left(-\frac{b}{2a}\right)=f\left(\frac{5}{2}\right)=-\frac{37}{4}\); \(f\left(8\right)=21\)
\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{5}{2}\right)=-\frac{37}{4}\)
\(f\left(x\right)_{max}=f\left(8\right)=21\)