ta có y=cos x trong [−π/2;π/2]
\(\Rightarrow\) \(cos\) \(\pm\dfrac{\pi}{2}\) \(\le\) cos x \(\le\) cos 0
\(\Leftrightarrow\) 0\(\le\) cos x \(\le\) 1
vậy Min là 0
và Max là 1
ta có y=cos x trong [−π/2;π/2]
\(\Rightarrow\) \(cos\) \(\pm\dfrac{\pi}{2}\) \(\le\) cos x \(\le\) cos 0
\(\Leftrightarrow\) 0\(\le\) cos x \(\le\) 1
vậy Min là 0
và Max là 1
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
Tìm GTLN và GTNN của các hàm số sau trên một đoạn cho trước:
y = sinx trên đoạn [\(\dfrac{-\Pi}{4}\);\(\dfrac{3\Pi}{4}\)]
tìm tập xác định của các hàm số:
1.y=sin2x
2.y=\(\dfrac{1-cosx}{sinx}\)
3.y=\(\dfrac{1-2sinx}{cos2x}\)
4.y=tan\(\left(x+\dfrac{\pi}{4}\right)\)
tìm GTLN,GTNN của hàm số
y=cos3x + 5 x \(\in\left(\frac{\Pi}{9};\frac{2\Pi}{9}\right)\)
Tìm tập xác định của hàm số sau
a) y=cot(\(3x+\dfrac{\pi}{6}\)) + \(\dfrac{tan2x}{sinx+1}\)
b) y=\(\sqrt{5+2cot^2x-sinx}\) + cot\(\left(\dfrac{\pi}{2}+x\right)\)
Tìm txđ của hàm số sau
a, \(y=3tan\left(2x+3\right)\)
b, \(y=cot\left(\dfrac{x}{3}+\dfrac{\pi}{4}\right)\)
tìm txd của hàm số
y = \(\dfrac{sin\left(x-\dfrac{\pi}{3}\right)}{cos2x+1}+cotx\)
Hàm số nào sau đây không là hàm số tuần hoàn? Giải thích?
tan2x; cosx+x; \(cot\left(x+\dfrac{\pi}{3}\right)\); sinx+1