a) sin6(4x) + cos6(4x) + 2
= (sin2(4x) + cos2(4x))(sin4(4x) + cos4(4x) - sin2(4x)cos2(4x)) + 2
= 1.((sin2(4x) + cos2(4x))2 - 3sin2(4x)cos2(4x)) + 2
= - 3sin2(4x)cos2(4x) + 3
= -\(\dfrac{3}{4}\).(4sin2(4x)cos2(4x) + 3
= -\(\dfrac{3}{4}\).sin2(8x) + 3
vì -1 ≤ sin(8x) ≤ 1 nên 0 ≤ sin2(8x) ≤ 1.
=> min = 3 khi sin(8x) = 0
max = \(\dfrac{9}{4}\) khi sin(8x) = 1