Xét phương trình: y=3sinx+4cosx+5
<=>3sinx+4cosx+5-y=0
Để phương trình có nghiệm:
=>32+42≥(5-y)2 (đẳng thức Bunhiacopxki)
<=>25≥25-10y+y2
<=>y2-10y≤0
<=>0≤y≤10
vậy miny=0; maxy=10
Xét phương trình: y=3sinx+4cosx+5
<=>3sinx+4cosx+5-y=0
Để phương trình có nghiệm:
=>32+42≥(5-y)2 (đẳng thức Bunhiacopxki)
<=>25≥25-10y+y2
<=>y2-10y≤0
<=>0≤y≤10
vậy miny=0; maxy=10
Tìm GTNN,GTLN của y=4sin2x -3sinx -1
Tìm GTLN, GTNN của hàm số : y= -2sin2x + 3sinx -1
Tìm max, min của hàm số
a) \(y=\sqrt{3}sinx+cosx\)
b) \(y=sin2x-cos2x\)
c) \(y=3sinx+4cosx\)
Tìm GTLN; GTNN của các hàm số
\(a,y=3-4sin^2xcos^2x\)
\(b,y=\dfrac{-2}{3sinx-5}\) trên đoạn \(\left[0;\dfrac{\pi}{2}\right]\)
tìm GTLN,GTNN của hs
y=4cos2x-4cosx+2
Tìm GTLN, GTNN của hàm số:
y=sin4x + cos4x
y=3sinx + 4cosx
y= cos(2x+π/4)-cos(2x-π/4)
Tìm tất cả các giá trị tham số m để hàm số sau chỉ nhận giá trị dương:
y=(3sinx - 4cosx)2 - 3sinx + 4cosx + m
Tìm tập xác định của các hàm số sau:
1) a) y=tanx+3
b) y=3-4cotx
c) y=tan2x+1
d) y=4-5cot3x
e) \(y=tan\left(x+\dfrac{\pi}{3}\right)\)-3
f) \(y=4-2cot\left(x-\dfrac{\pi}{6}\right)\)
2) a) y=3sinx-4cosx+5
b) y=3cos2x-4sin2x+1
c) \(y=\dfrac{3}{1-cosx}+5\)
d) \(\dfrac{1}{1+cosx}+2\)
e) \(y=\dfrac{sinx+2}{cosx+3}\)
f) \(y=1-\dfrac{2}{sinx-1}\)
g) \(y=2x+\dfrac{3}{1+sinx}\)
h) \(y=x^2-x+\dfrac{1}{sin^2x-sinx}\)
j) y=2tanx-3cotx+5
h) \(y=\sqrt{\dfrac{1-sin^2x}{1+cos^2x}}\)
tìm m để bất pt \(\left(3sinx-4cosx\right)^2-6sinx+8cosx\ge2m-1\) có nghiệm đúng với mọi x thuộc R