Lời giải:
ĐK: $x\geq 8$
\(A=\sqrt{x+1}-\sqrt{x-8}=\frac{(x+1)-(x-8)}{\sqrt{x+1}+\sqrt{x-8}}=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\)
\(\sqrt{x+1}+\sqrt{x-8}=\sqrt{(\sqrt{x+1}+\sqrt{x-8})^2}=\sqrt{2x-7+2\sqrt{(x+1)(x-8)}}\)
\(\geq \sqrt{2.8-7+2.0}=3\) với mọi \(x\geq 8\)
Do đó: \(A=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\leq \frac{9}{3}=3\)
Vậy \(A_{\max}=3\Leftrightarrow x=8\)