ĐKXĐ: ...
\(A=\frac{\sqrt{x}}{x+4\sqrt{x}+4}\Rightarrow A-\frac{1}{8}=\frac{\sqrt{x}}{x+4\sqrt{x}+4}-\frac{1}{8}=\frac{-x+4\sqrt{x}-4}{x+4\sqrt{x}+4}=\frac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)^2}\le0\)
\(\Rightarrow A\le\frac{1}{8}\Rightarrow A_{max}=\frac{1}{8}\) khi \(x=4\)
Hoặc:
- Với \(x=0\Rightarrow A=0\)
- Với \(x>0\Rightarrow A=\frac{\sqrt{x}}{x+4\sqrt{x}+4}=\frac{1}{\sqrt{x}+\frac{4}{\sqrt{x}}+4}\le\frac{1}{2\sqrt{\frac{4\sqrt{x}}{\sqrt{x}}}+4}=\frac{1}{8}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)