\(A=\frac{x^2+4x+7+12}{x^2+4x+7}=1+\frac{12}{x^2+4x+7}=1+\frac{12}{x^2+4x+4+3}=1+\frac{12}{\left(x+2\right)^2+3}\)
Có A lớn nhất khi 12/x^2+4x+7 lớn nhất
Vì (x+2)2 >=0 ⇒ (x+2)2 +3 >=3 với mọi x
Vậy 12/(x+2)2+3 lớn nhất khi (x+2)2+3 nhỏ nhất
⇒ (x+2)2+3 có giá trị nhỏ nhất ⇔ x+2=0⇔x=-2
Nên A có giá trị lớn nhất khi x=-2
khi đó: A= 1+12/(-2+2)2+3=5
Hay A có giá trị lớn nhất là 5 khi x=-2