Đề bài phải là tìm GTNN chứ ?
\(A=5x^2-4x-6x+y^2+12\\ =\left(4x^2-4xy+y^2\right)+\left(x^2-6x+9\right)+3\\ =\left(2x-y\right)^2+\left(x-3\right)^2+3\)
Vì :
\(\left\{{}\begin{matrix}\left(2x-y\right)\ge0\forall x;y\\\left(x-3\right)^2\ge0\forall x\end{matrix}\right.\\ \Rightarrow A\ge3\forall x;y\\ \Rightarrow Min_A=3\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=6\\x=3\end{matrix}\right.\)